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Abstract
It easy to see that each graph is a modification of a reduced graph Γ of the same rank. It is proved that for every reduced

graph with binary rank 2r, there is a unique maximal graph with binary rank 2r which conatins Γ as an induced subgraph.
These maximal graphs are called symplectic graphs. In this paper, we study the symplectic graphs which are defined over a
ring. We also find the automorphism group of symplectic graphs which are defined over Zpn , where p is a prime number and
n is positive integer.
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1. Introduction

In this paper, a graph Γ = Γ(V,E) is considered as a simple undirected graph with vertex-set V(Γ) = V,
and edge-set E(Γ) = E.

In this paper, let R be a commutative ring with identity element 1, and let V be a free R - module of
R - dimension n ⩾ 2. The symplectic form β is a bilinear form β : V × V −→ R, such that β(x, x) = 0
for all x ∈ V . The pair (V ,β) is called a symplectic space. The symplectic form β : V × V −→ R is called
nonsingular, when the R-module homomorphism from V to V∗ = HomR(V ,R) given by x 7−→ β( , x) is an
isomorphism, for all x ∈ V . In the sequence, assume that β is a nonsingular symplectic form.

Recall that an element x in V is unimodular if there is an f ∈ V∗ such that f(x) = 1. For x ∈ V , we call
Rx a line. A hyperbolic pair{x,y} is a pair of unimodular vectors in V with the property that β(x,y) = 1.
The module H = Rx

⊕
Ry is called a hyperbolic plane.

Any unimodular vector u ∈ V may be complemented to a hyperbolic pair as follow:
Since u is unimodular, there is an f ∈ V∗ with f(u) = 1. Since β is nonsingular, there is an v in V with
1 = f(u) = β(u, v). Then, {u, v} is a hyperbolic pair. A ring R is stably free whenever V = V1 ⊕ P, V and
V1 are free R - modules, then P is a free R - module.

Proposition 1.1. [2] Suppose that R is a stably free ring, and V be a symplectic space over R. Then V is an
orthogonal direct sum V = H1 ⊥ H2 ⊥ . . . ⊥ Hm of hyperbolic planes H1,H2, . . . ,Hm. In particular, the
dimension of V is even.
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Lemma 1.2. [4] Let x and y be unimodular elements in V . Then Rx = Ry if and only if x = λy for some λ ∈ R∗.

Let Γ(V,E) and Λ(V
′
,E

′
) be two graphs. The mapping α : V −→ V

′
is a homomorphism from Γ to

Λ if v,w ∈ V(Γ) are adjacent in Γ , then α(v),α(w) ∈ V
′
(Λ) are adjacent in Λ. An isomorphism between

Γ and Λ is a bijection homomorphism α : V ←→ V
′

with v,w ∈ V(Γ) are adjacent in Γ , if and only if
α(v),α(w) ∈ V

′
(Λ) are adjacent in Λ.

An automorphism of a graph Γ is an isomorphism from Γ to itself. The set of all automorphisms of Γ ,
with composition of functions, is called the automorphism group of Γ and denoted by Aut(Γ).

In most situations, it is difficult to determine the automorphism group of a graph, but there are various
in the literature and some of the recent works come in the references [3, 5]. Now, let Γ be a graph with
automorphism group G = Aut(Γ). For vertex v ∈ V(Γ), let Gv denote the stabilizer subgroup of vertex v;
that is, the subgroup of G containing of those automorphism that fix v. From first isomorphism theorem,
we know that:

[G : Gv] =
|G|

|Gv|
⩽ |V(Γ)|.

The graph Γ is called vertex-transitive if G = Aut(Γ) acts transitively on V = V(Γ). In other words,
for any two vertices v,w ∈ V(Γ) there is an automorphism α ∈ Aut(Γ) such that α(v) = w. Now if Γ is a
vertex-transitive graph, then for each vertex v ∈ V(Γ), we have

|G|

|Gv|
= |V| =⇒ |G| = |Gv||V|.

Let Γ = (V,E) be a graph. The action of Aut(Γ) on V(Γ) induces an action on E(Γ), by the rule
β{x,y} = {β(x),β(y)}, where β ∈ Aut(Γ), and {x,y} ∈ E(Γ). Γ is called edge transitive if this action is
transitive.

2. symplectic and generalized symplectic group

Suppose that (V ,β) and (V ′,β′) are two symplectic spaces. An isometry from (V ,β) to (V ′,β′) is an R

- isomorphism σ : V −→ V ′ such that:

β(x1, x2) = β′(σ(x1),σ(x2)) for every elements x1, x2 ∈ V .

It is easy to verify that the set of all isometries from (V ,β) to (V ,β) is a group; this group is called
symplectic group over V and denoted by SPR(V).

Definition 2.1. Let B = {v1, . . . , v2n} be a basis for the symplectic space (V ,β). The matrix B = (bij)1⩽i,j⩽2n,
where bij = β(vi, vj) is called the matrix of the form β over B.

The following theorem has been obtained from the definition of symplectic space and has an easy
proof.

Theorem 2.2. Let (V ,β) and (W,β′) be two symplectic spaces with dimV = dimW = 2n. Suppose that B1 and
B2 are ordered basis of V and W respectively. If we denote the matrices of β and β′ with respects to the above basis
by B and C respectively, then T : V −→W is an isometry from V to W if and only if AtCA = B, where A is matrix
of T with respect to B1.

Corollary 2.3. Let R be a stably free ring and (V ,β) be symplectic space over R. Then

SPR(V) = {A|A is invertable and AtJA = J}

where J is blockdiagonal matrix as follow:
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J =


0 1
−1 0

. . .
0 1
−1 0


In [2] it is proved that, Z(SPR(V)) = {±I2n}, where Z(SPR(V)) denotes the center of the group SPR(V).

A commutative ring R have a stable range one if for all α,β ∈ R with ⟨α,β⟩ = R, there exist a δ in R such
that α+ δβ ∈ R∗.

Lemma 2.4. [2] Let R be a commutative ring with stable range 1 and 2 ∈ R be an unit. Let V be a symplectic space
over R. Then SPR(V) acts transitively on unimodular vectors and on hyperbolic planes.

Definition 2.5. Generalized symplectic group over ring R is denoted by GSPR(V) and defined as follow:

GSPR(V) = {T |T is invertible over R and TJTt = kJ for some k ∈ R∗}.

3. symplectic graphs

For all terminologies and notations not defined here, we follow [1, 2]. We now define a class of regular
graphs, which is known as symplectic graphs.

Definition 3.1. Let (V ,β) be a symplectic space over ring R. The symplectic graph over SPR(V) denoted
by GSPR(V), is a graph with vertex- set

{Rx|x is unimodular in V},

and two vertices Rx and Ry are adjacent if and only if β(x,y) ∈ R∗.

This adjacency is well defined, since if x1, x2,y1,y2 are unimodular elements in V with Rx1 = Rx2 and
Ry1 = Ry2, then there exist λ,µ ∈ R∗ such that x1 = λx2 and y1 = µy2. Therefore

β(x1,y1) ∈ R∗ ⇐⇒ β(λx2,µy2) ∈ R∗

⇐⇒ λµβ(x2,y2) ∈ R∗ ⇐⇒ β(x2,y2) ∈ R∗.

Now from lemma 2.4 we have the following lemma that proved in [2].

Lemma 3.2. Let R be a commutative ring with stable range 1 and 2 ∈ R be an unit. Then the symplectic graph
GSPR(V) is vertex-transitive and edge-transitive.

We now define a symplectic graph over R = Zpn . Let V2v ⊆ Z
(2v)
pn be a set of elements (a1,a2, . . . ,a2v),

where for all 1 ⩽ i ⩽ 2v, ai ∈ Zpn and there is an i ∈ {1, . . . , 2v} such that ai is invertible in Zpn . We
define an equivalence relation ∼pn on V by the following rule:

(a1,a2, . . . ,a2v) ∼pn (b1,b2, . . . ,b2v)⇐⇒ (a1,a2, . . . ,a2v) = λ(b1,b2, . . . ,b2v),

for some λ ∈ Z∗
pn .

Let [a1, . . . ,a2v] denotes the equivalence class of (a1, . . . ,a2v) with respect to ∼pn , and let V(2v)
∼pn

be the set

of all equivalence classes. We define the bilinear form β : V
(2v)
∼pn
× V

(2v)
∼pn
−→ R by the rule β(x,y) = xJyt.

The symplectic graph module pn on Z
(2v)
Pn , relative to J which is denoted by SP

(2v)
pn , is a graph with

vertex-set {[a1, . . . ,a2v]|(a1, . . . ,a2v) ∈ V(2v)} and adjacency defined by

[a1, . . . ,a2v] adjacent to [b1, . . . ,b2v] if and only if β(x,y) ∈ Z∗
Pn ,
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where x = (a1, . . . ,a2v) and y = (b1, . . . ,b2v). In [4], it is proves that SP(2v)
pn is a vertex and edge-transitive

graph.
In the first step, note that β is a symplectic form over Z

(2v)
Pn .

Lemma 3.3. Each element of V := V
(2v)
∼pn

is unimodular.

Proof. If we define q : V −→ V∗ by q(x) = qx where qx(v) = β(x, v), then q is an isomorphism. For
x = (a1, . . . ,a2v), let ai be invertible in ZPn . If i ⩾ v+ 1, then let y = (0, . . . ,bi−v = 1, 0, . . . , 0) and so
β(x,y) = aibi−v = 1. If i ⩽ v, then let y = (0, . . . ,bi+v = 1, 0, . . . , 0) and so β(x,y) = aibi+v = 1. Then
there is an f = qy ∈ V∗ such that qy(x) = f(x) = 1 and hence x is unimodular.

By previous lemma, we conclude that for R = ZPn , GSPR(v) is isomorphic to SP
(2v)
Pn .

In [2], it is proved that ZPn has a stable range one, and we know that for p ⩾ 2, 2 is unit in ZPn , where p

is prime. Then by lemma 3.2. we conclude that SP(2v)
Pn is vertex-transitive and edge-transitive.

Lemma 3.4. Let p be a prime integer and R = ZPn and V = Z
(2v)
Pn . Suppose that T ∈ GSPR(V). We define

σT : V −→ V by the rule σT (x) = R(xT) for all unimodular elements x ∈ V . Then T ∈ GSPR(V) if and only if
σT ∈ Aut(GSPR(V)).

Proof. Let T ∈ GSPR(V) and Rα,Rβ ∈ SPR(V), then for T ∈ GSPR(V) we have TJTt = kJ, where k ∈ Z∗
Pn .

Then αJβt = k−1αTJTtβt and Rα is adjacent to Rβ if and only if αT is adjancent to βT , hence σT ∈
Aut(GSPR(V)).
Conversely, assume that σT ∈ Aut(GSPR(V)), then

Rα ≁ Rβ⇐⇒ αJβt ⊈ R∗ ⇐⇒ αJβt = r,

for some r ∈ ZPn \ Z∗
Pn .

If r = 0, then αJβt = 0 if and only if α(TJTt)βt = 0. Hence, for any nonzero α ∈ R, two equations
(αJ)Xt = 0 and (αTJTt)X = 0 have the same solutions. But rank(αJ) = rank(αTJTt) = 1, and so
αk = sα(TJTt) for some s ∈ R∗.
Now let {e1, . . . , e2v} be the standard basis for V , then we obtine

J = diag(k1, . . . ,k2v)TJT
t,

for some k1, . . . ,k2v ∈ Rx. If we put α = (1, . . . , 1), then k1 = k2 = . . . = k2v = k ∈ Rx, and so J = KTJTt,
T ∈ GSPR(V).
If αJβt = r ̸= 0, then r = Pn for 1 ⩽ m ⩽ n, and Pn−mαJβt = Pn = 0, so we can do as above and then
T ∈ GSPR(V).

We now proceed to proving the main result of this paper.

Theorem 3.5. Let R = ZPn and V = Z
(2v)
Pn , then

Aut(GSPR(V)) =
GSPR(V)

kI ,

for some k ∈ R∗.

Proof. We define the homomorphism σ : GSPR(V) −→ Aut(GSPR(V)) by T 7−→ σT . In [5], it is proved
that, σT1 = σT2 if and only if T1 = kT2, for k ∈ R∗. Then kerσ = {kI|k ∈ R∗}. Now it remains to show that
for any f ∈ Aut(GSPR(V)), there is an T ∈ GSPR(V), such that f = σT . For any α ̸= 0 in V , we will denote
f(Rα \ {0}) by f(α) and f(0) = 0. Since f ∈ Aut(GSPR(V)), then αJβt = f(α)J(f(β))t for any α,β ∈ V .
Fix α ∈ V and let β1,β2 ∈ V , then αJβt

1 = f(α)J(f(β1))
t and αJβt

2 = f(α)J(f(β2))
t then αJ(β1 + β2)

t =
f(α)J(f(β1) + f(β2))

t. Thus, αJ(β1 +β2)
t = f(α)J(f(β1 +β2))

t, hence f(α)J(f(β1 +β2) − f(β1) − f(β2)) = 0
and therefor for all α ∈ V , we have f(β1 +β2) = f(β1) + f(β2). Let,
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T =


f(1, 0, . . . , 0)
f(0, 1, . . . , 0)

...
f(0, 0, . . . , 1)


Therefor f(α) = αT , for any α ∈ V . Then T is nonsingular, so by lemma 3.4. T ∈ SPR(V) and f = σT .

References

[1] C. Godsil, G. Royal, Algebric graph theory, Speringer-Verlage New york (2001). 3
[2] B. Kirkwood, B.R. Mcdonald, R. P. Agarwal, The symplectic group over a ring with one in its stable range, Pacificy.

Math., 92(1), (1981), 111–125. 1.1, 2, 2.4, 3, 3, 3
[3] Z. Liwei, C. Zhao, F. Rogcuan, M. Chagli, Full automorphism group of generalized symplectic graph, Sci. China Math,

56(7), (2013) 1509-1520. 1
[4] Y. Meemark, T. Prinyasart, On symplectic graphs modulo Pn, Discrete Math, 311(17), (2011) 1874–1878. 1.2, 3
[5] Z. Tang, Z. X. Wan, Symplectic graphs and their automorphisms, European J. Combin, 27(1), (2006) 38–50. 1, 3


	Introduction
	 symplectic and generalized symplectic group
	 symplectic graphs

